Covering theory for linear categories with application to derived categories

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covering Theory of Categories without Free Actions and Derived Equivalences

Let G be a group of automorphisms of a category C. We give a definition for a functor F : C → C to be a G-covering and three constructions of the orbit category C/G, which generalizes the notion of a Galois covering of locally finitedimensional categories with group G whose action on C is free and locally bonded. Here C/G is defined for any category C and does not require that the action of G i...

متن کامل

Derived Categories , Derived Equivalences and Representation Theory

Deenition: A derived category ... is when you take complexes seriously! (L.L. Scott Sc]) The aim of this chapter is to give a fairly elementary introduction to the (not very elementary) subject of derived categories and equivalences. Especially, we emphasize the applications of derived equivalences in representation theory of groups and algebras in order to illustrate the importance and usefuln...

متن کامل

a new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot

abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...

15 صفحه اول

Covering Functors, Skew Group Categories and Derived Equivalences

Abstract. Let G be a group of automorphisms of a category C. We give a definition for a functor F : C → C to be a G-covering and three constructions of the orbit category C/G, which generalizes the notion of a Galois covering of locally finitedimensional categories with group G whose action on C is free and locally bonded. Here C/G is defined for any category C and does not require that the act...

متن کامل

Covering Theory of Categories without Free Action Assumption and Derived Equivalences

Let G be a group of automorphisms of a category C. We give a definition for a functor F : C → C to be a G-covering and three constructions of the orbit category C/G, which generalizes the notion of a Galois covering of locally finitedimensional categories with group G whose action on C is free and locally bonded. Here C/G is defined for any category C and we do not require that the action of G ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2014

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2014.02.016